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Objective: Understanding how brain changes over lifetime provides

the basis for new insights into neurophysiology and neuropathology.

In this study, we carried out a pseudo-longitudinal study based on

age-related Chinese brain atlases (i.e., Chinese2020) constructed from

large-scale volumetric brain MRI data collected in normal Han 

Chinese adults at varying ages. 

Methods: In order to quantify the deformation and displacement 

of brains for each voxel as age increases, optical flow algorithm was

employed to compute motion vectors between every two consecutive

brain templates of the age-related brain atlas, i.e., Chinese2020. 

Results: Dynamic age-related neuroanatomical changes in a stand-

ardized brain space were shown. Overall, our results demonstrate 

that brain inward deformation (mainly due to atrophy) can appear

in adulthood and this trend generally accelerates as age increases,

affecting multiple regions including frontal cortex, temporal cortex,

parietal cortex, and cerebellum, whereas occipital cortex is least

affected by aging, and even showed some degree of outward

deformation in the midlife.  

Conclusion: Our findings indicated more complicated age-related 

changes instead of a simple trend of brain volume decrease, which 

may be in line with the recently increasing interests in the age-related

cortical complexity with other morphometry measures.  
  

 
 

1 Introduction 
 

Understanding how brain structure changes 

over lifetime provides the anatomical basis for 

neurophysiology and the identification of its 

pathologies. In particular, with the high prevalence 
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of dementia and other aging-associated diseases, 

it is in great demand to understand how the brain 

anatomy changes during aging. Age-related brain 

volume change typically follows an inverted-U 

trajectory, which increases in earlier ages, reaches 

a plateau in middle age and decreases gradually 

in elderly period [1–4]. Converging evidences sug-

gested that age-related brain structural changes are 

complicated and region-dependent [5]. Visualizing 

the age-related neuroanatomical changes in an 

intuitive way with the high spatial resolution is 

potentially helpful for a comprehensive under-

standing of dynamic brain structural changes. 

In this study, we propose to investigate the 

morphological details of brain aging using optical 

flow algorithm [6] on our 4D Chinese brain atlas, 

i.e., Chinese2020 [7] (Fig. 1). Optical flow has been 

applied to intraoperative MRI images to study 

the detailed brain shift before and after the dura 

opening [8], but has not been used to study mor-

phological changes in a group atlas basis.  

Brain atlas provides a standardized space for 

precise spatial positioning. It was Talairach who 

first proposed a 3D detailed brain coordinate 

system, known as Talairach space [9], which 

lays the basis for modern 3D brain mapping. 

Thereafter, a series of statistically population- 

based brain templates were constructed to extend 

the applicability of brain atlas to represent the 

brain in a group level [10–13]. Many spatio- 

temporal brain atlases were proposed to reflect 

the brain development in fetal, neonatal and 

pediatric stages [15–17], leaving much room for 

further studies in adult brain aging. Proposed in 

2015, statistical Chinese brain atlas is the largest 

scale brain templates for Chinese population [7], 

and a series of age-related brain atlases were 

constructed in that study covering the ages of 

20 to 75.  

From the point of acquisition, longitudinal data 

collected at multiple stages for the same cohort 

of subjects over time is valuable in reflecting 

age-related evolvement [4, 5, 18–23]. However, 

the feasibility of large-scale study is very low if 

not impossible due to difficulty in arranging long- 

term MR scans while maintaining a sufficient 

sample size with inconsistent scanning conditions. 

Therefore, we employed a pseudo-longitudinal 

study of brain development across lifespan 

from our constructed age-related template, i.e., 

Chinese2020, which serves as a feasible alternative 

to a longitudinal study. This is also the first 

pseudo-longitudinal study based on the largest 

collection of normal Chinese subjects’ brain MR 

images.  

 

2  Methods 

2.1  Materials 

The Chinese2020 templates were applied in  

this study to measure the brain morphological 

changes in aging [7]. The Chinese2020 templates 

were built on MRI scans of 2020 healthy adults 

across 24 Chinese provinces recruited from 15 

hospitals. Pre-processing techniques including 

automatic noise estimation method and intensity 

normalization method were designed to improve 

the image quality and image profiles of different 

subjects obtained from different scanners for 

constructing the high-resolution brain templates. 

Twelve templates were generated spanning 

ages 20–75 with a 5-year interval by inter-subject 

registration. In order to make the brain templates 

more smoothly developed along the age axis, we 

adopted the kernel regression strategy to construct 

the time-varying brain templates. Eventually a 

whole population brain template was generated 

from the 12 templates through non-rigid registra-

tion. The templates constructed at a 5-year age 

interval are shown in Fig. 1A. In analogy, the 

ageing course of a man is illustrated in Fig. 1B. 

Methods for templates construction and any 
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associated references are available in our recent 

works [7]. 

2.2  Methods for brain change quantification 

In order to objectively evaluate the development 

of brain along the age axis, tensor-based optical 

flow algorithm was employed using variational 

methods to quantify the deformation and dis-

placement of brains for each voxel [6]. Optical 

flow is a computer vision technique that represents 

the apparent motion in a series of images at 

different time points. The direction and magnitude 

of optical flow at each voxel can be represented 

by the direction and length of each arrow. In this 

study, motion vectors are estimated between 

every two consecutive brain templates of the 

spatial temporal brain atlas Chinese2020. First, 

color motion field was computed for all voxels 

to show both the direction and magnitude of all 

deformation between adjacent age groups, where 

the direction is encoded by the color and the 

magnitude is represented by the color intensity. 

Second, in order to better visualize the effective 

deformation field, vector motion field was obtained 

by identifying motion vectors that satisfy the 

magnitude threshold of 0.07, and was overlaid 

onto the brain templates (of the younger age 

group), which enables further examination of our 

findings in relation to different brain regions.  

 

3  Results 
 

Figure 1A illustrated the constructed brain tem-

plates Chinese2020 used in our analysis, which 

has a total of 12 brain templates ranging from 

the age 20 to 75 at a 5-year interval. To observe 

the Chinese population-based brain deformation 

over the time course of aging, vector motion field 

and color motion field were computed using 

optical flow algorithm for all pairs of adjacent 

age groups. To summarize the results along all 

three axes, color motion field and motion vector 

field results at the cursor slice position (91, 109, 

91) were shown in Figs. 2 and 3, respectively. In  

 

Fig. 1 The final Chinese brain template Chinese2020. (A) Templates for different age groups ranging from 20 to 75 years old. (B) Simulation

cartoon of the aging course of a person.  



www.manaraa.com

Brain Sci. Adv. 

                                                                       
http://bsa.tsinghuajournals.com                                                                     journals.sagepub.com/home/BSA  

109

 

 

 

 

 

Fig. 2 Brain deformation in terms of color motion field in coronary, axial and sagittal views from the age 20 to age 75 using optical flow

algorithm at the cursor slice position (91, 109, 91).  

 
Fig. 3 Brain deformation in terms of vector motion field in coronary, axial and sagittal views from the age 20 to age 75 using optical flow

algorithm at the cursor slice position (91, 109, 91).  
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addition, a more detailed result from axial view 

at slice position Z = 31, 46, 61, 76, 91, 106, 121, 

136 was shown in Figs. 4 and 5, which depicts 

the brain deformation in terms of vector motion 

field from 20 to 50 years old and from 50 to 75 

years old, respectively. 

 

4  Discussion 

 

In this study, we provide a novel 4D visualiza-

tion of the brain aging process across life span. 

This visualization is based on a standard tem-

plate space to portray convergent morphometric 

changes at population level, and a series of brain 

structural changes were found to be associated 

with advancing age.  

Considering the weakness of the longitudinal 

data as addressed in introduction, the pseudo- 

longitudinal strategy may provide a more 

“flexible” visualization of brain aging changes. 

Based on the pseudo-longitudinal data, a spectrum 

of temporally continuous brain images can be 

reconstructed to approximate the real brain aging 

structural changes. In this manner, the temporal 

 

Fig. 4 Brain deformation in terms of vector motion field with more details in axial view from 20 to 50 years old using optical flow 

algorithm. 



www.manaraa.com

Brain Sci. Adv. 

                                                                       
http://bsa.tsinghuajournals.com                                                                     journals.sagepub.com/home/BSA  

111

details can be fully preserved. Besides, this 

visualization can reflect the average tendency 

of change at a population level and will not be 

biased toward individual variability, since it is in 

a standard template space based on a sufficiently 

large cohort. Moreover, except for some quan-

titative comparisons results which are usually 

the primary findings in longitudinal study, such 

as decreased grey matter volume, the pseudo- 

longitudinal visualization could present more 

geometric information related to brain aging. 

The current knowledge on brain aging is still 

quite limited. From the temporal perspective, 

previous longitudinal studies of lifetime brain 

structure changes are comparatively rare. The 

longitudinal data set cannot address age-related 

brain differences spanning several decades [24], 

and the temporal resolution is quite limited since 

the data were usually collected in several scattered 

time points. From the spatial perspective, there 

have been evidences that age-related brain 

changes were not uniform across the hemisphere  

 

Fig. 5 Brain deformation in terms of vector motion field with more details in axial view from 50 to 75 years old using optical flow 

algorithm. 
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and thought to be locally nonlinear [24], while 

most previous findings were based on the region- 

of-interest (ROI) analysis to emphasize the linear 

trends of changes, leaving the regional variability 

unexplored [5, 24]. Therefore, to preserve the full 

spatial and temporal information, in this study 

we provided a 4D description of age-related 

brain changes in a template space based on 

large-scale cross-sectional brain structural data. 

With this description, continuous and detailed 

changes can be presented in both domains of 

time and space. 

Previous brain aging morphometric studies 

were generally confined within the quantitative 

findings such as decreased prefrontal grey matter 

volume, while some geometric features may be 

comparatively disregarded. Several interesting 

findings could be noticed based on our 4D 

visualization. When examining the vector motion 

field results generated from the optical flow 

algorithm in the axial plane (Figs. 4 and 5), 

deformation of anatomical structures is found to 

continue through adulthood and into old ages. For 

instance, brain inward deformation can already 

be seen during early adulthood (age 20–35). In 

particular, inward deformation during age 30–35 

is relatively notable as compared to age 20–25 

and age 25–30 in frontal cortex, temporal cortex, 

parietal cortex and cerebellum. In addition, 

ventricular outward deformation appeared to 

emerge in middle age (age 40–45, age 45–50, and 

age 50–55), and persist into old age (age 60–65, 

age 65–70, and age 70–75). Surprisingly, inward 

deformation of lateral ventricle, as well as outward 

deformation in cerebellum and occipital cortex 

can be observed during age 55–60. However, if 

we consider midlife (age 40–60) deformation as 

a whole, it still maintained an overall ventricular 

outward deformation and cerebellar inward 

deformation because the deformation in these 

two regions during age 40–45 has outweighed 

the opposing changes during age 55–60. As for 

occipital cortex, it appeared to have greater 

outward deformation (age 45–50 and age 55–60) 

than inward deformation (age 40–45) in midlife. 

Moreover, we found that extensive brain inward 

deformation can already be observed during age 

40–45 prior to older age transition during age 

70–75, although brain inward deformation is still 

greater in late life when we examine the changes 

in longer duration (age 40–55 versus age 60–75). 

Overall, our results demonstrate that brain 

inward deformation can appear in adulthood 

and generally accelerate with increasing age, 

affecting multiple regions including frontal cortex, 

temporal cortex, parietal cortex, and cerebellum, 

whereas occipital cortex is least affected by 

aging and even showed some degree of outward 

deformation in midlife.  

When comparing our findings to those of other 

studies, although it is widely pointed out that 

the parietal and occipital lobes are generally 

constant in the term of volume over life [3, 5, 25], 

our results have shown a prominent inward 

deformation in parietal cortex and a reci-

procating deformation in occipital cortex at some 

point in the lifetime. This finding may be in line 

with the recently increasing interests on the age- 

related cortical complexity with more advanced 

morphometry measures [26–29], which indicated 

more complicated age-related changes instead 

of a general trend of decrease as suggested by 

volume. However, these previous studies may 

not cooperate well to provide consistent findings 

based on limited age window or small sample 

size, commonly tens of subjects. Further studies 

on the structural complexity of brain cortex may 

be investigated in future to add more novel 

findings.  

On the other hand, it is noteworthy to mention 

that not all our deformation field results were 

indicative of the degree of brain atrophy, for the 

reason that large brain deformation alone is not 

a direct indicator for brain atrophy, where the 
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latter one involves an expansion in cerebrospinal 

fluid (CSF) relative to brain parenchyma. Thus, it 

could merely reflect the regional volume change 

if the deformation field is located within brain 

parenchyma (grey matter and white matter). In 

addition, the observations of brain changes in 

template level may also be confounded by the 

population distribution for constructing brain 

templates. Future longitudinal study could 

further investigate the finding of these pseudo- 

longitudinal results. 

 

5  Conclusion 
 

Our results implicated more complicated age- 

related brain structural changes rather than a 

general trend of decrease in volume alone, which 

may be consistent with recent studies on the age- 

related cortical complexity. Additional studies 

on longitudinal brain changes could further 

validate the results of this pseudo-longitudinal 

study. The potential impacts of this study lie in 

several aspects. First, investigation on the age- 

related brain morphological changes will help to 

answer the questions about how brain develops 

and degenerates. Besides, understanding how the 

brain structure changes in healthy individuals 

will help to provide a normal standard for future 

observing pathological changes of the brain. In 

summary, compared with previous static brain 

atlases, this work provides a time-varying reference 

that is more valuable and comprehensive to reflect 

the physiological aging process.  
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